If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15w^2+4w-1=2w
We move all terms to the left:
15w^2+4w-1-(2w)=0
We add all the numbers together, and all the variables
15w^2+2w-1=0
a = 15; b = 2; c = -1;
Δ = b2-4ac
Δ = 22-4·15·(-1)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8}{2*15}=\frac{-10}{30} =-1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8}{2*15}=\frac{6}{30} =1/5 $
| 24.70=-8.6c+33.3 | | 16.67x+12.5x=100 | | 8y-4=124 | | 2x+11/5=11 | | 83=0.1d+80 | | 8x-2=102 | | 0.3b=0.09 | | -2x÷-5=8 | | 16t=12t+6 | | -6x5=1-2x/3 | | 9x-8=10x-6 | | 4x-2=7x-1 | | 3y+6=30y | | 10*10^(8-6x)+7=34 | | 2x−3−5=7 | | 4x-3x+6=-24 | | X-9=2x4 | | 23=18w+-21+14w | | 4x+15=9x+35 | | 6x+15=3x+20=x+11 | | r^{2}-20r-96=0 | | 56=n—-12 | | 56=n-12 | | 2(3x+1)=5x-5 | | 2(5y+2)= 14 | | 23+18w=-21=14w | | 30y+25-18y-9=17 | | 2k^2-3k+14=0 | | 83=d—-19 | | 44=d—-12 | | 4x-30+x+2=180 | | 22=n—-2 |